Search results for "Ab-initio calculation"

showing 6 items of 6 documents

Lower mantle hydrogen partitioning between periclase and perovskite : a quantum chemical modelling

2016

Abstract Partitioning of hydrogen (often referred to as H2O) between periclase (pe) and perovskite (pvk) at lower mantle conditions (24–80 GPa) was investigated using quantum mechanics, equilibrium reaction thermodynamics and by monitoring two H-incorporation models. One of these (MSWV) was based on replacements provided by Mg2+ ↔ 2H+ and Si4+ ↔ 4H+; while the other (MSWA) relied upon substitutions in 2Mg2+ ↔ Al3+ + H+ and Si4+ ↔ Al3+ + H+. H2O partitioning in these phases was considered in the light of homogeneous (Bulk Silicate Earth; pvk: 75%–pe:16% model contents) and heterogeneous (Layered Mantle; pvk:78%–pe:14% modal contents) mantle geochemical models, which were configured for lower…

010504 meteorology & atmospheric sciencesHydrogenpericlaseAnalytical chemistrySocio-culturalechemistry.chemical_elementengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)chemistry.chemical_compoundGeochemistry and PetrologyOrganic chemistryH2O-partitioningperovskiteEquilibrium constant0105 earth and related environmental sciencesChemistryAb-initio calculationslowermantle; H2O-partitioning; periclase; perovskite.SilicatePartition coefficientlower mantleAnhydrousengineeringPericlaseChemical equilibriumlower mantle H2O-partitioning Ab-initio calculations periclase perovskite
researchProduct

H-He collision-induced satellite in the Lyman alpha profile of DBA white dwarf stars

2020

The spectra of helium-dominated white dwarf stars with hydrogen in their atmosphere present a distinctive broad feature centered around 1160~\AA\/ in the blue wing of the Lyman-$\alpha$ line. It is extremely apparent in WD 1425+540 recently observed with HST COS. With new theoretical line profiles based on ab initio atomic interaction potentials we show that this feature is a signature of a collision-induced satellite due to an asymptotically forbidden transition. This quasi-molecular spectral satellite is crucial to understanding the asymmetrical shape of Lyman-$\alpha$ seen in this and other white dwarf spectra. Our previous work predicting this absorption feature was limited by molecular…

ATOMIC DATALINE: PROFILEAb initiochemistry.chemical_elementBASIS-SETLINEEXCITED-STATEAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linePhysics - Atomic PhysicsWHITE DWARF0103 physical sciencesRadiative transferABSORPTIONAstrophysics::Solar and Stellar AstrophysicsAB-INITIO CALCULATIONPhysics::Atomic PhysicsELECTRONIC-TRANSITION MOMENT010306 general physicsSTARS: ATMOSPHERE010303 astronomy & astrophysicsHeliumLine (formation)POTENTIAL-ENERGY CURVEPhysics[PHYS]Physics [physics]BALMER-ALPHAWhite dwarfAstronomy and AstrophysicsMOLECULAR DATAPotential energyDipolechemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceATOMIC PROCESSSHAPE[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Magnetic field-induced alignment of molecular rotor-shaped cyclophanes

2010

Molecular pinwheels consisting of dipolar substituted cyclophanes in solution can function as free microscopic rotors in the presence of a homogeneous static magnetic field B and a circularly polarized electric field E rotating on a plane containing B. Owing to the high magnetic anisotropy of [26](1,2,3,4,5,6)cyclophane and [36](1,2,3,4,5,6)cyclophane biased by strong ring currents, ∼1 in 105 molecules are expected to align with the C6 symmetry axis perpendicular to a magnetic field of 21 T. The magnetic-field-controlled alignment of rotor-shaped cyclophanes is insignificantly affected by nonpolar solvents, for example, toluene.

ChemistryRotor-shaped cyclophanes; molecular engines; magnetic field-controlled molecular alignment; dipolar rotors in circularly polarized electric field; ab-initio calculations; solvent effectsMagnetostaticsMolecular physicsSymmetry (physics)Magnetic fieldDipolechemistry.chemical_compoundMagnetic anisotropyNuclear magnetic resonanceElectric fieldPerpendicularGeneral Materials SciencePhysical and Theoretical ChemistryCyclophane
researchProduct

Trace element fractionation through halite crystallisation: Geochemical mechanisms and environmental implications

2019

Halite is an important mineral for industry, agriculture and food production. It crystallises after water evaporation, while the progressive growth of dissolved metal ions in brines is occurring. Then, halite exploitation may provide the delivery of metal ions in the environment and the mechanism of this trace element accumulation should be studied. In this work we investigate the distribution of lanthanides and Y (hereafter named Rare Earth Elements, REE), Zr and Hf between crystallising halite and brines in the Dead Sea as geochemical tools for recognising the mechanism of metal ion removal from brines and accumulation in halite. Halite forms cubic crystals where octahedral planes sometim…

Environmental Engineering010504 meteorology & atmospheric sciencesEvaporiteChemistryMetal ions in aqueous solutionInorganic chemistryDead Sea Zr-Hf decoupling Ab-initio calculation REE Environmental pollution De-icing saltTrace elementEnvironmental pollution010501 environmental sciencesengineering.material01 natural sciencesPollutionMetalCrystalvisual_artengineeringvisual_art.visual_art_mediumEnvironmental ChemistryHaliteWaste Management and DisposalDissolution0105 earth and related environmental sciencesScience of The Total Environment
researchProduct

Electromagnetic moments of scandium isotopes and $N=28$ isotones in the distinctive $0f_{7/2}$ orbit

2022

The electric quadrupole moment of $^{49}$Sc was measured by collinear laser spectroscopy at CERN-ISOLDE to be $Q_{\rm s}=-0.159(8)$ $e$b, and a nearly tenfold improvement in precision was reached for the electromagnetic moments of $^{47,49}$Sc. The single-particle behavior and nucleon-nucleon correlations are investigated with the electromagnetic moments of $Z=21$ isotopes and $N=28$ isotones as valence neutrons and protons fill the distinctive $0f_{7/2}$ orbit, respectively, located between magic numbers, 20 and 28. The experimental data are interpreted with shell-model calculations using an effective interaction, and ab-initio valence-space in-medium similarity renormalization group calcu…

Nuclear and High Energy PhysicsNuclear Theorynucl-thCollinear laser spectroscopyNuclear TheoryFOS: Physical sciencesAstronomy & Astrophysicsnucl-exComputer Science::Digital LibrariesPhysics Particles & FieldsElectromagnetic momentsNuclear Theory (nucl-th)Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentisotoopitScience & TechnologyPhysicsNUCLEAR MOMENTSQUADRUPOLE-MOMENTSPhysics NuclearNucleon-nucleon correlationNuclear Physics - TheoryPhysical SciencesSHELL-MODELCOLLECTIVITYPräzisionsexperimente - Abteilung BlaumydinfysiikkaskandiumAb-initio calculation
researchProduct

Ab-Initio Calculations of Oxygen Vacancy in Ga2O3 Crystals

2021

The research has been funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540). J. Purans and A.I.Popov acknowledge the ERAF project 1.1.1.1/20/A/057 “Functional Ultrawide Bandgap Gallium Oxide and Zinc Gallate Thin Films and Novel Deposition Technologies”. The Institute of Solid State Physics, University of Latvia (Latvia) as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2.

ab-initio calculationsβ-ga2o3band structureQC1-999β-GaOGeneral Physics and Astronomy02 engineering and technologyDFT01 natural sciences7. Clean energyZinc gallateGallium oxideAb initio quantum chemistry methodsPolitical science0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instanceEuropean unionmedia_common010302 applied physicsPhysicsGeneral Engineeringoxygen vacancydft021001 nanoscience & nanotechnologyEngineering physicsOxygen vacancy3. Good healthChristian ministry0210 nano-technologyLatvian Journal of Physics and Technical Sciences
researchProduct